一文讀懂AI專核的“身份”

從2018年的歲初到年尾,人工智能都是手機行業(yè)的關(guān)鍵詞。

手機廠商忙不迭給用戶灌輸這樣一個認知:AI會讓你的手機更智能,并推出了智能語音助手、面部解鎖、照片智能分類等一系列應(yīng)用。事實證明,行業(yè)趨勢總會導(dǎo)致產(chǎn)業(yè)鏈上游的變革,處于產(chǎn)業(yè)鏈頂端的手機芯片也不例外。

蘋果A12和麒麟980都宣稱搭載了NPU單元來增強手機的AI處理能力,高通特意在驍龍845的宣傳中加入了“人工智能”的標簽,三星剛推出的Exynos 9820成為首個集成NPU單元的Exynos系列芯片,聯(lián)發(fā)科則在Helio P70中強調(diào)了“AI專核”的概念……

如果你不是一位IC領(lǐng)域的專家,看到NPU、AI專核等一系列概念后勢必會一頭霧水,AI專核到底是什么,又扮演了什么樣的角色?這正是本文的初衷。

人工智能芯片到底是什么?

回答這個問題之前,先來弄明白兩個概念,什么是CPU和GPU?

簡單來說,CPU就是手機的“大腦”,也是手機正常運行的“總指揮官”。GPU被翻譯成圖形處理器,主要工作確實是圖像處理。

再來說說CPU和GPU之間的分工,CPU遵循的是馮諾依曼架構(gòu),核心就是“存儲程序,順序執(zhí)行”,就像是做事一板一眼的管家,什么事情都要一步一步來。假如你讓CPU去種一棵樹,挖坑、澆水、植樹、封土等工作都要獨自一步一步進行。

如果讓GPU去種一棵樹的話,會喊來小A、小B、小C等一同來完成,把挖坑、澆水、植樹、封土等工作分割成不同的子任務(wù)。這是因為GPU執(zhí)行的是并行運算,即把一個問題分解成若干個部分,各部分由獨立的計算單元去完成。恰好圖像處理的每一個像素點都需要被計算,與GPU的工作原理不謀而合。


一文讀懂AI專核的“身份”


就如同一位知乎大神打的比方:CPU像是老教授,積分、微分什么都會算,但有些工作是計算大量一百以內(nèi)的加減乘除,最好的方法當(dāng)然不是讓老教授挨個算下去,而是雇上幾十個小學(xué)生把任務(wù)分配下去。這就是CPU和GPU的分工,CPU負責(zé)大型運算,GPU為圖像處理而生,從電腦到智能手機都是如此。

但當(dāng)人工智能的需求出現(xiàn)后,CPU和GPU的分工就出現(xiàn)了問題,人工智能終端的深度學(xué)習(xí)和傳統(tǒng)計算不同,借由后臺預(yù)先從大量訓(xùn)練數(shù)據(jù)中總結(jié)出規(guī)律,得到可以給人工智能終端判定的參數(shù),比如訓(xùn)練樣本是人臉圖像數(shù)據(jù),實現(xiàn)的功能在終端上就是人臉識別。

CPU往往需要數(shù)百甚至上千條指令才能完成一個神經(jīng)元的處理,無法支撐起大規(guī)模的并行運算,而手機上的GPU又需要處理各種應(yīng)用的圖像處理需求。強行使用CPU和GPU進行人工智能任務(wù),結(jié)果普遍是效率低下、發(fā)熱嚴重。

這就需要高通、聯(lián)發(fā)科們拿出解決方案出來,不那么湊巧的是,各家移動芯片大廠的解決思路還不太一樣。

高通目前商用的旗艦處理器是驍龍845,搭載了Adreno 630 GPU,相比于上一代的驍龍835,AI處理能力提升了3倍,并且支持多個平臺的神經(jīng)網(wǎng)絡(luò)系統(tǒng)??赡苁浅鲇趯PU性能的自信,又或許是沒有意識到AI需求的來臨,高通并沒有獨立的AI運算單元,仍然是依靠CPU、GPU、DSP等來兼職處理AI需求。

聯(lián)發(fā)科一直都是被低估的玩家,所給出的解決方案和谷歌的TPU有些類似,使用了ASIC(專用集成電路)的形式,打造了專門處理人工智能需求的AI專核,成為整合在HelioP60、Helio P70等芯片中的一小塊IP。AI專核的優(yōu)點在于運行速度快、功耗低,可以和CPU、GPU進行協(xié)同分工,CPU負責(zé)大型運算,GPU承擔(dān)圖像處理,AI專核負責(zé)深度學(xué)習(xí)相關(guān)的場景。

文初所提到的NPU,翻譯成中文就是神經(jīng)網(wǎng)絡(luò)處理器,即蘋果A12、麒麟980和Exynos 9820提供的解決方案,其實也是AI專核的一種。通俗來說就是人工智能加速器,因為GPU是基于塊數(shù)據(jù)處理的,但手機上的AI應(yīng)用是需要實時處理的,人工智能加速器剛好解決了這個痛點,把深度學(xué)習(xí)相關(guān)的工作接管過來,從而緩解CPU 和GPU 的壓力。

可以看到,蘋果A12、麒麟980、Exynos 9820的NPU單元和AI專核有著相似的原理,將CPU和GPU的計算量分開,諸如面部識別、語音識別等AI相關(guān)的任務(wù)卸載到ASIC上處理,AI專核早已成為一種行業(yè)趨勢。

只不過目前“NPU”的概念還沒有完全統(tǒng)一,有些玩家仍以集成多個DSP核心的方式來調(diào)動資源的支持,寒武紀的IP在處理mobilenetv1/v2又有一些問題,因此突顯出在這方面,聯(lián)發(fā)科的步子要邁得更大一些。

AI專核是跨越還是幻想?

用一個“專核”來處理AI場景并非沒有缺陷,比如功能單一、開發(fā)時間長、增加芯片的成本、占據(jù)手機空間,大概也是高通沒有選擇這種解決方案的原因。


一文讀懂AI專核的“身份”


不過要判斷AI專核是超前的跨越還是無用的幻想,只需要來對比幾個實際的使用場景。

以時下應(yīng)用最廣泛的AI人臉識別為例,這是一個“掃描檢測”和“結(jié)果判斷”的過程,需要在掃描過程中判斷五官坐標定位、人臉屬性識別、人臉特征提取等,然后在判斷時根據(jù)人臉特征、人臉識別、活體驗證等進行比對。人臉識別并非是純算法方面的事情,還需要涉及到CPU、GPU、VPU、DLA 等多個運算單元。

有媒體做過這樣一個對比測試,分別是搭載聯(lián)發(fā)科Helio P60、高通驍龍845和驍龍710的智能手機進行人臉識別,前者搭載了AI專核,后兩者采用了軟件優(yōu)化的解決方案,最終人臉識別速度分別是316.5ms、687.5ms和950ms。同樣都定位在中端處理器,聯(lián)發(fā)科HelioP60的人臉識別速度碾壓了驍龍710,甚至比驍龍845還要節(jié)約近一半的時間,AI專核的優(yōu)勢可見一斑。

為何會出現(xiàn)如此懸殊的差距?人臉識別的過程需要攝像頭先識別出人臉,無論是光線陰暗或者面朝別處,然后精準判斷臉部的特征點,比如眼睛多大、臉有多長,與已知樣本進行比較,確定這個人是誰。整個過程中需要極高的算力支撐,擁有AI專核的HelioP60自然比CPU、GPU兼職處理的芯片更高效,哪怕是旗艦級的驍龍845。

在AI專核上嘗到了甜頭后,聯(lián)發(fā)科在HelioP70中繼續(xù)升級了AI專核,AI處理能力相比于上一代提升了30%,支持更復(fù)雜的AI應(yīng)用,例如人體姿態(tài)識別、 AI 視頻編碼、照片實時美化、場景檢測、 AR 功能等等。


一文讀懂AI專核的“身份”


舉個例子來說,當(dāng)一位美妝博主進行直播的時候,HelioP70的一個 APU(聯(lián)發(fā)科為AI專核的命名)可以進行人臉偵測、實時美顏,另一個 APU 同時在做 HDR 處理以及背景虛化。如果是驍龍845的解決方案,單個DSP需要完成人臉檢測、畫面分割、背景虛化、HDR處理、多幀合成等流程,速度上的差異由此而生。

再比如在拍照方面,一張高動態(tài)范圍的HDR圖需要三張12bit的RAW照片合成,然后通過ISP來輸出最佳優(yōu)化的照片。從拍照到照片輸出是一個極短的時間,對運算量有著很大的要求,也往往會造成2-3秒的延時。但HelioP70的雙核APU可以雙線程并行加速,不到1秒的時間就可以完成照片優(yōu)化,比單個DSP的處理效率更高。

不只是聯(lián)發(fā)科,華為也在麒麟980的發(fā)布會上不吝筆墨地展示了雙核NPU在AI方面的優(yōu)勢,集中體現(xiàn)在圖像和視頻的處理上。比如說在物體的識別上,從以前識別到輪廓,到現(xiàn)在識別到細節(jié);在實時的物體分割上,從過去略微粗放的場景劃分,到現(xiàn)在的精細劃分。同時麒麟980還允許實時“跟蹤”多個對象,每分鐘圖像識別達到4500張,還支持在視頻中“換背景”。

此外,AI專核的另一大優(yōu)勢恐怕就是在續(xù)航上,至少蘋果、華為、聯(lián)發(fā)科都急于證明,并且集中在兩個維度上:

一方面AI專核的價值在于與CPU、GPU進行協(xié)同分工,CPU和GPU過多的任務(wù)堆疊只會虛耗電量、提高溫度,比如雖然驍龍845的性能很強勁,在AI拍照的時候仍然會有輕微的發(fā)熱情況,諸如HelioP70等搭載AI專核的產(chǎn)品并不存在這個問題;

另一方面在AI專核的協(xié)同下,可以對用戶行為進行學(xué)習(xí),進而對用戶的使用場景進行預(yù)測,然后進行合理的性能分配。好比說當(dāng)你在游戲時讓CPU高效運算,而當(dāng)你在看電子書時避免性能浪費。

寫在最后

聯(lián)想到我們的實際生活,前兩年對圖像處理的需要還局限在美顏上,現(xiàn)在的短視頻、直播已經(jīng)對手機的AI性能表現(xiàn)出了更高的需求,聯(lián)發(fā)科的AI專核正是為此而生。

可以斷定的是,聯(lián)發(fā)科、華為等通過AI專核或類似的理念來提升芯片的AI能力,無疑押對了移動芯片的未來方向,可能在兩三年后AI專核將是手機芯片不可或缺的組成,也期待這些芯片大廠們在AI專核上不斷角力,不斷創(chuàng)新,不斷突破。

免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責(zé)任。任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。

2018-11-29
一文讀懂AI專核的“身份”
手機廠商忙不迭給用戶灌輸這樣一個認知:AI會讓你的手機更智能,并推出了智能語音助手、面部解鎖、照片智能分類等一系列應(yīng)用。

長按掃碼 閱讀全文