作者:網(wǎng)絡(luò)大數(shù)據(jù)
我們身處一個(gè)“技術(shù)爆炸”和“共享、開(kāi)源”的時(shí)代,先進(jìn)技術(shù)的更新迭代速率超過(guò)了歷史上任何一個(gè)時(shí)期,而且這些技術(shù)也不再閉塞,人人都可以接觸并學(xué)習(xí)。終身學(xué)習(xí)已經(jīng)是我們每個(gè)人不得不面對(duì)的問(wèn)題,這一點(diǎn)在大數(shù)據(jù)/人工智能領(lǐng)域體現(xiàn)的尤為明顯:層出不窮的新技術(shù),一方面為我們帶來(lái)了便利,但同時(shí)也使我們面臨難以高效學(xué)習(xí)和選擇的窘境。因此,在這樣的時(shí)代背景下學(xué)習(xí)大數(shù)據(jù)知識(shí),需要有相適應(yīng)的邏輯和方法。
本文試圖幫助各位讀者用好各類(lèi)“共享、開(kāi)源”的學(xué)習(xí)工具以及學(xué)習(xí)渠道,躲過(guò)各類(lèi)新手容易誤入的“深坑”,以最小時(shí)間成本和經(jīng)濟(jì)成本,優(yōu)質(zhì)地完成目標(biāo)技術(shù)的學(xué)習(xí)和掌握。
本文首先分析了時(shí)代背景,繼而對(duì)目前大數(shù)據(jù)領(lǐng)域的人才梯隊(duì)進(jìn)行了劃分,最后給出了大數(shù)據(jù)/人工智能人才從菜鳥(niǎo)到高手的進(jìn)階指南。
一、背景鋪墊
“技術(shù)爆炸”以及“共享開(kāi)源”是這個(gè)時(shí)代最有特色的標(biāo)簽,筆者認(rèn)為二者是互為因果且緊密聯(lián)系的,首先在“技術(shù)爆炸”的時(shí)代,對(duì)于走在技術(shù)發(fā)展最前沿的研究團(tuán)隊(duì)來(lái)說(shuō),“技術(shù)變現(xiàn)”的最好手段就是“共享開(kāi)源”。反觀互聯(lián)網(wǎng)、移動(dòng)互聯(lián)發(fā)展成熟之前,信息是十分閉塞的,某項(xiàng)技術(shù)創(chuàng)新一旦出現(xiàn)就需要第一時(shí)間注冊(cè)專(zhuān)利,技術(shù)需要靠政府來(lái)保護(hù),而技術(shù)變現(xiàn)的唯一途徑就是出賣(mài)專(zhuān)利或者組織生產(chǎn)形成產(chǎn)品。
現(xiàn)如今互聯(lián)網(wǎng)及移動(dòng)互聯(lián)已經(jīng)發(fā)展的十分成熟,新的信息會(huì)以極低的成本在極短的時(shí)間內(nèi)傳遍世界的每個(gè)角落,所以處在技術(shù)前沿的研究團(tuán)隊(duì)僅需要在第一時(shí)間將自己的工作成果上傳到“arxiv”或者“github”之類(lèi)中立的共享、開(kāi)源網(wǎng)站,便會(huì)立即得到全球輿論的共同保護(hù),這樣的力度要遠(yuǎn)遠(yuǎn)強(qiáng)于某個(gè)國(guó)家的專(zhuān)利保護(hù)。
隨后,只要新技術(shù)確有應(yīng)用價(jià)值或者學(xué)術(shù)價(jià)值,那么各類(lèi)資本巨頭、科技大鱷以及相關(guān)的各類(lèi)組織便會(huì)排著隊(duì)上門(mén)送出豐厚的offer,對(duì)于前沿團(tuán)隊(duì)來(lái)說(shuō),技術(shù)變現(xiàn)的時(shí)間點(diǎn)要遠(yuǎn)遠(yuǎn)早于技術(shù)產(chǎn)品化的時(shí)間點(diǎn)。
其次,因?yàn)椤凹夹g(shù)爆炸”總有新的技術(shù)等待著前沿團(tuán)隊(duì)去研究發(fā)現(xiàn),所以前沿團(tuán)隊(duì)保持領(lǐng)先的最好方法不是捂著現(xiàn)有成果不放,而是盡快“共享開(kāi)源”實(shí)現(xiàn)變現(xiàn),然后投入到新的研究工作中。
最后,“共享開(kāi)源”也在很大程度上促進(jìn)了“技術(shù)爆炸”,無(wú)論任何技術(shù)、科技的長(zhǎng)足發(fā)展都需要一個(gè)龐大人才體系來(lái)支撐,反觀歷史上的各個(gè)時(shí)期,分享知識(shí)、培養(yǎng)人才的渠道主要是“學(xué)校”,這一渠道不但形式單一而且往往具備相當(dāng)?shù)拈T(mén)檻,會(huì)將相當(dāng)一部分“有志青年”擋在門(mén)外。
而在如今這個(gè)時(shí)代,知識(shí)傳播最快速的渠道是互聯(lián)網(wǎng),由于“共享開(kāi)源”,世界上最優(yōu)質(zhì)的教育資源以及最先進(jìn)的學(xué)術(shù)、技術(shù)理念忽然間沒(méi)有了任何門(mén)檻,面向全部個(gè)體無(wú)差別開(kāi)放,結(jié)果就是只要某一技術(shù)、科技領(lǐng)域有了很大的突破并具備廣闊的應(yīng)用前景(如大數(shù)據(jù)、人工智能),那么相應(yīng)的人才梯隊(duì)會(huì)在短時(shí)間內(nèi)自動(dòng)補(bǔ)齊跟上。
站在大數(shù)據(jù)學(xué)術(shù)前沿的研究團(tuán)隊(duì)只需要一往無(wú)前地開(kāi)拓疆域,其后的人才梯隊(duì)隨即會(huì)自動(dòng)開(kāi)展“新技術(shù)論證”及“技術(shù)產(chǎn)品化”等“保障”工作,保障這一技術(shù)領(lǐng)域及相關(guān)行業(yè)的健康發(fā)展,來(lái)進(jìn)一步促進(jìn)資源向金字塔尖的前沿團(tuán)隊(duì)匯聚,支撐其開(kāi)拓工作。
我們將上文提到的人才梯隊(duì)劃分為:菜鳥(niǎo)筑基、初入江湖、登堂入室以及華山論劍四個(gè)等級(jí):
菜鳥(niǎo)筑基:本階段的人才以大數(shù)據(jù)基礎(chǔ)理論的學(xué)習(xí)為主,尚不能勝任真實(shí)的項(xiàng)目或者工作;
初入江湖:本階段的人才已經(jīng)具備了初步的大數(shù)據(jù)實(shí)踐的能力,建議通過(guò)實(shí)踐(做項(xiàng)目、打比賽等)來(lái)更好地帶動(dòng)學(xué)習(xí);
登堂入室:本階段的人才需具備大數(shù)據(jù)科研論文的調(diào)研、閱讀和理解能力,能夠成功地將論文中的算法進(jìn)行復(fù)現(xiàn);
華山論劍:本階段的人才能夠獨(dú)立地開(kāi)展大數(shù)據(jù)新技術(shù)的研究工作,具有發(fā)表原創(chuàng)性論文的能力。
下文將針對(duì)處于不同階段的大數(shù)據(jù)人才,給出不同的修煉、升級(jí)建議。
二、菜鳥(niǎo)筑基
1. 最好的資源往往是公開(kāi)的
讀過(guò)背景鋪墊后相信已經(jīng)不需筆者再解釋為什么最好的資源往往是公開(kāi)的,在此直接給出一些獲取高質(zhì)量資源的渠道。首先推薦國(guó)外的三個(gè)網(wǎng)站,分別是“Coursera”、“Arxiv”以及“Github”。
Coursera是全球頂尖的在線(xiàn)學(xué)習(xí)網(wǎng)站,由業(yè)內(nèi)極具學(xué)術(shù)造詣及分享精神的大咖創(chuàng)辦。Coursera上的課程相對(duì)比較基礎(chǔ),應(yīng)該是“小白”起飛最好的平臺(tái),在這里推薦吳恩達(dá)(Andrew Ng)開(kāi)設(shè)的“機(jī)器學(xué)習(xí)”以及“深度學(xué)習(xí)”。對(duì)于國(guó)內(nèi)學(xué)生來(lái)說(shuō)最大的問(wèn)題可能就是英語(yǔ)了,在這里需要明確一點(diǎn),如果各位想要成為真正的高手,那么英語(yǔ)是永遠(yuǎn)繞不過(guò)去的坎,業(yè)內(nèi)最新、最好的資料無(wú)一例外都是英文,即便是來(lái)自國(guó)內(nèi)的頂尖高手在發(fā)論文時(shí)都不會(huì)選擇用中文。
其實(shí)對(duì)于絕大多數(shù)人,英語(yǔ)并不應(yīng)該被當(dāng)作一門(mén)“學(xué)科”來(lái)學(xué)習(xí),而應(yīng)該被當(dāng)作“工具”來(lái)用。具體的做法也沒(méi)有捷徑,就是看到不懂的單詞立即查,單詞不用刻意去記憶,下次遇到不會(huì)就再查一次,一切以快速弄懂句子含義為目標(biāo)。
Arxiv以及Github是各位讀者未來(lái)會(huì)特別常用的兩個(gè)網(wǎng)站/工具,Arxiv上有最新最全的共享論文,論文中會(huì)對(duì)各類(lèi)算法進(jìn)行詳盡的闡釋?zhuān)珿ithub上有最新最好的開(kāi)源代碼,這些代碼往往是對(duì)某種算法的實(shí)現(xiàn),具體的使用方法網(wǎng)上有許多教程,在此不做展開(kāi)。
讀者可以簡(jiǎn)單的理解為Arxiv是修煉內(nèi)功的地方,而Github是修煉外功的地方。只練內(nèi)功不練外功是無(wú)法解決實(shí)際問(wèn)題的,但只練外功不練內(nèi)功又往往毫無(wú)威力,一定要內(nèi)外兼修。最后再向大家介紹一個(gè)神奇的網(wǎng)站名叫“gitxiv”,會(huì)幫助各位找到論文與代碼的對(duì)應(yīng)關(guān)系。
2. 不要看書(shū)、不要看書(shū)、不要看書(shū)
一門(mén)學(xué)科怎么入門(mén)呢?菜鳥(niǎo)在面對(duì)這個(gè)問(wèn)題時(shí),最容易踩入的“深坑”就是找一本權(quán)威的書(shū)來(lái)從頭學(xué)起,一旦踏入此坑,輕則荒廢自己數(shù)周時(shí)間,重則對(duì)某一門(mén)學(xué)科徹底失望終生。首先好書(shū)本來(lái)就不多,往往可遇不可求。其次即便遇到好書(shū),為了保證學(xué)術(shù)性,書(shū)中用語(yǔ)往往“嚴(yán)謹(jǐn)”但難懂,且會(huì)從學(xué)科的早期歷史為讀者打下“堅(jiān)實(shí)基礎(chǔ)”,講到最近的技術(shù)手段時(shí)又戛然而止。最后,就算讀者傾盡數(shù)月之功力,堅(jiān)持讀完了,筆者可以用血淋林的親身實(shí)踐告訴你,書(shū)中前半部分的內(nèi)容一般人肯定會(huì)忘的。
當(dāng)然也有特殊情況,如果各位已經(jīng)確定了自己的研究方向,并且有高人/導(dǎo)師指點(diǎn),給出了相應(yīng)領(lǐng)域內(nèi)必讀好書(shū)的名錄,這一類(lèi)書(shū)還是值得一看的。不過(guò)在看的時(shí)候也要注意,不要糾結(jié)于某些細(xì)節(jié)問(wèn)題,看不懂的地方可以先記下來(lái),這類(lèi)細(xì)節(jié)往往會(huì)在各位后面實(shí)踐過(guò)程中的具體場(chǎng)景下恍然大悟。
正確的做法一句話(huà)就可以概括,好書(shū)是用來(lái)查的而不是用來(lái)啃的,什么時(shí)候來(lái)查呢?下文會(huì)逐步解答。
3. 找對(duì)好基友,連滾帶爬往前走
現(xiàn)在已經(jīng)不是一個(gè)單打獨(dú)斗,憑著跌落斷崖后找到一本秘籍閉關(guān)幾年就能橫掃天下的時(shí)代了,無(wú)論是像Hinton(推翻了BP算法的BP算法之父)這樣的泰斗,還是像何凱明(發(fā)best paper像一般人發(fā)paper一樣容易的神奇學(xué)霸)這樣的新秀,都處在各自非??孔V的團(tuán)隊(duì)中與小伙伴們共同探索。好基友不需要多,有一兩個(gè)真正靠譜的就已經(jīng)足夠,至于隊(duì)友的重要性后文會(huì)慢慢闡釋。
菜鳥(niǎo)筑基這部分最后要給出的建議就是,千萬(wàn)不要在這個(gè)階段停留太久,不要等“準(zhǔn)備好了”再去著手實(shí)踐,因?yàn)檫@里的“準(zhǔn)備好了”往往包含菜鳥(niǎo)的不自信,不去進(jìn)一步提升自己是永遠(yuǎn)準(zhǔn)備不“好”的。一般情況下,想做“計(jì)算機(jī)視覺(jué)”或者“自然語(yǔ)言處理”等偏AI方向的同學(xué)在完成吳恩達(dá)的《深度學(xué)習(xí)》課程后,想做“數(shù)據(jù)挖掘”的同學(xué)在完成吳恩達(dá)的《機(jī)器學(xué)習(xí)》課程后,就可以選擇相應(yīng)的實(shí)踐項(xiàng)目準(zhǔn)備進(jìn)入下一階段了。
那么我們?cè)撨x擇什么實(shí)踐手段呢?最佳的情況是有大神帶隊(duì)做真實(shí)項(xiàng)目,但是這樣的機(jī)會(huì)往往可遇而不可求,在此不展開(kāi)討論。普羅大眾型的辦法是參加一個(gè)大數(shù)據(jù)比賽項(xiàng)目,現(xiàn)在國(guó)內(nèi)的“阿里天池”以及國(guó)外的“Kaggle”都是開(kāi)放式的大數(shù)據(jù)比賽平臺(tái),平臺(tái)上會(huì)有各種組織發(fā)布的各類(lèi)真實(shí)項(xiàng)目供大家實(shí)踐、比賽。讀到這里各位心里可能還存有很大的疑問(wèn):“就算學(xué)會(huì)了基本課程,在沒(méi)有人帶的情況下能上手實(shí)踐嗎?”,下文將陸續(xù)回答如何“連滾帶爬”的進(jìn)行實(shí)踐。
三、初入江湖
1. 找到一個(gè)最高的baseline
這里的“baseline”可以理解為前人已經(jīng)做出成果,當(dāng)自己恰好需要去做相同工作時(shí)的參照。對(duì)于上文提到的情況,如果有大神帶隊(duì)進(jìn)行實(shí)踐的話(huà),那么帶隊(duì)大神此前的實(shí)踐經(jīng)驗(yàn)就成為了全體小隊(duì)成員的“baseline”。那對(duì)于沒(méi)有“大神”資源的廣大讀者是否有更通用的解決辦法呢?答案是肯定的。如果讀者目前對(duì)于一類(lèi)問(wèn)題無(wú)從下手,例如剛剛學(xué)完“深度學(xué)習(xí)”的課程,但是不知道如何去做“自然語(yǔ)言處理”類(lèi)的項(xiàng)目,最好的辦法是利用好國(guó)內(nèi)的“萬(wàn)方”以及“知網(wǎng)”這樣的論文查詢(xún)平臺(tái),去查詢(xún)相關(guān)領(lǐng)域國(guó)內(nèi)普通高校的學(xué)位論文,這樣的論文絕大部分都是中文并且會(huì)在論文中介紹大量的基礎(chǔ)背景知識(shí),正好滿(mǎn)足了我們的需求。
如果是對(duì)某一技術(shù)方的特定知識(shí)點(diǎn)不明所以,例如在做“自然語(yǔ)言處理”方向的項(xiàng)目,但卻不太了解“LSTM”,則可以利用好國(guó)內(nèi)的諸如“知乎”、“簡(jiǎn)書(shū)”以及“CSDN”這類(lèi)的知識(shí)分享網(wǎng)站,只要不是太新的理論,都可以找到相應(yīng)的博文或者解答。使用上述兩類(lèi)渠道的共同技巧是,多搜幾篇文章對(duì)比著看。同一個(gè)概念或者技術(shù),一篇文章很難全面描述清楚,并且由于文章作者不同,解釋問(wèn)題的出發(fā)點(diǎn)也不盡相同,所以如果各位遇到看不懂某篇文章的情況時(shí),不用急躁,接著看下一篇文章就好。另外,前文提到的“好書(shū)”在這里就可以用來(lái)查了,讀者會(huì)發(fā)現(xiàn)原來(lái)想記都記不住的知識(shí)點(diǎn),只要“查”完并且“用”過(guò),那么一般想忘都忘不掉。
這里對(duì)baseline所謂“高”的定義是,越接近學(xué)術(shù)前沿,實(shí)踐效果越好,就認(rèn)為越“高”。一般情況下,可參照的成果越“高”,中文文獻(xiàn)就越少。
文章寫(xiě)到這里不知是否回答了上一章節(jié)提出的疑問(wèn),上一章節(jié)提到的“連滾帶爬”指的就是我們?cè)谶x定某一實(shí)踐方向后,根據(jù)實(shí)踐的最終成果再回過(guò)頭來(lái)對(duì)我們的相關(guān)知識(shí)進(jìn)行“查漏補(bǔ)缺”的過(guò)程。這樣的學(xué)習(xí)過(guò)程,目標(biāo)性更強(qiáng),參與者完全有針對(duì)性的去學(xué)習(xí),學(xué)到的東西可以立即實(shí)踐,從而避免“學(xué)過(guò)就忘”的尷尬。
2. 合理追求quick win
筆者曾經(jīng)仔細(xì)地研究過(guò)為什么女生逛街會(huì)“不知疲倦”,得到的答案是,女生每逛一家店鋪,看看店鋪中的鞋子/衣服/包包就能得到一定的興奮點(diǎn),在得到一個(gè)興奮點(diǎn)后就想著直奔下一個(gè)興奮點(diǎn)。類(lèi)比到我們做項(xiàng)目/打比賽的過(guò)程中,我們需要為自己的團(tuán)隊(duì)設(shè)置這樣的“興奮點(diǎn)”,讓團(tuán)隊(duì)成員都能夠享受到“quick win”的快感,來(lái)支持大家繼續(xù)推進(jìn)。
而取得“quick win”的關(guān)鍵是要將手中的工作/任務(wù)合理劃分成若干“稍微努力一下就能達(dá)到”的子任務(wù),這中間的細(xì)節(jié)過(guò)于復(fù)雜,在此就不展開(kāi)討論。一個(gè)teamleader需要做的最重要的事,就是幫助團(tuán)隊(duì)合理劃分任務(wù)而不斷取得“quick win”,一個(gè)人只要具備這樣的能力,無(wú)論技術(shù)高低都能夠團(tuán)結(jié)一批志同道合的小伙伴。
3. 你最大的動(dòng)力往往來(lái)自DDL(Deadline)
有那么一句成功學(xué)的佳句是“每天叫醒我的不是鬧鐘而是夢(mèng)想”,這句話(huà)聽(tīng)起來(lái)很勵(lì)志,但對(duì)于90%的人來(lái)說(shuō)就是胡扯,我們回首望去發(fā)現(xiàn)每天叫醒我們的往往是“上班遲到后被扣的工資”或者是“晚到實(shí)驗(yàn)室后老板的殺氣”,這就是現(xiàn)實(shí),聽(tīng)起來(lái)很殘酷但是我們完全可以利用好它。具體到我們的升級(jí)以及項(xiàng)目推進(jìn)中,能讓我們不斷向前的最大動(dòng)力往往是“在DDL前無(wú)法完成任務(wù)后小伙伴們的鄙視”以及“完成quick win后帶來(lái)的成就感”。
做好這一點(diǎn)除了上一小節(jié)提到的要合理劃分任務(wù)之外,最重要的就是有一個(gè)靠譜的teamleader不斷的進(jìn)行推進(jìn)(push),每到既定節(jié)點(diǎn)后雷打不動(dòng)的推進(jìn)。最后要啰嗦一句,根據(jù)馬斯洛需求層次理論,夢(mèng)想應(yīng)該屬于模型頂層的“自我實(shí)現(xiàn)需求”,如果一個(gè)人可以被“夢(mèng)想”叫醒,那么這個(gè)人的其他需求應(yīng)該已經(jīng)被很好的滿(mǎn)足了,所以我在這里真誠(chéng)的祝福大家終有一天可以在早晨被自己的“夢(mèng)想”叫醒。
四、登堂入室及華山論劍
如果有一天各位發(fā)現(xiàn)自己在工作實(shí)踐中,需要不斷地關(guān)注最前沿的論文,并且需要不斷地嘗試復(fù)現(xiàn)論文中的算法來(lái)用于實(shí)踐,那么要恭喜各位已經(jīng)跨入了大數(shù)據(jù)/人工智能領(lǐng)域高手的行列了。登堂入室與華山論劍兩個(gè)階段的區(qū)分不是特別明顯,因?yàn)檎撐淖x得多了,總會(huì)有些自己的新想法,這些想法經(jīng)過(guò)實(shí)驗(yàn)驗(yàn)證后就可以去發(fā)論文。反過(guò)來(lái),即便你發(fā)表過(guò)前沿論文也還是需要繼續(xù)跟進(jìn)其他論文。
1. 朋友圈決定了你人生的高度
在這一小節(jié)的開(kāi)始,筆者首先要端出一碗毒雞湯,即便是在這個(gè)“開(kāi)源、共享”的時(shí)代,學(xué)術(shù)/技術(shù)資源的分布還是極度不平均的,并且這樣的不平均會(huì)越來(lái)越明顯。究其原因有兩個(gè),第一個(gè)原因可以援引在清華17級(jí)研究生開(kāi)學(xué)典禮上某校領(lǐng)導(dǎo)的一句話(huà)來(lái)闡釋—-“最有效果的研究手段就是與相當(dāng)水平的同行當(dāng)面交流”,翻譯一下就是高手越多的地方就越容易產(chǎn)生高手,這會(huì)導(dǎo)致高端人才分布的越發(fā)不平均。
另外,做學(xué)術(shù)前沿研究的經(jīng)濟(jì)成本是很高的,國(guó)內(nèi)某頂尖AI公司全球研發(fā)工作一個(gè)月的電費(fèi)開(kāi)銷(xiāo)就能達(dá)到千萬(wàn)級(jí)別。即使是普通的AI項(xiàng)目,服務(wù)器、GPU的成本也會(huì)導(dǎo)致普通的研究人員根本無(wú)法找到充足的經(jīng)費(fèi)來(lái)支持自己的研究。
喝完毒雞湯也要來(lái)一些正能量,雖然資源分布不平均了,但人才通道仍然是開(kāi)放的,只不過(guò)門(mén)檻越來(lái)越高而已,我身邊就有畢業(yè)四五年后,也能夠一邊工作一邊復(fù)習(xí)考上清華研究生,最終接觸到前沿科學(xué)研究的例子。數(shù)據(jù)派就是一個(gè)匯聚了清華頂尖大數(shù)據(jù)/人工智能資源的開(kāi)放組織,有心的小伙伴可以點(diǎn)擊“閱讀原文”加入組織~(主編現(xiàn)在可以把刀放下了,這波廣告打的筆者自己也有些猝不及防)
2. 選擇永遠(yuǎn)比努力更重要
這個(gè)標(biāo)題聽(tīng)起來(lái)又像是一碗“毒雞湯”,但這就是血淋林的生活帶給筆者的經(jīng)驗(yàn)。筆者見(jiàn)過(guò)某個(gè)算法團(tuán)隊(duì)自己悶頭搞了幾個(gè)月研究毫無(wú)進(jìn)展,經(jīng)過(guò)大神點(diǎn)播后一個(gè)月內(nèi)完工的情況。
下面舉一個(gè)更戲劇性的例子,自然語(yǔ)言處理曾經(jīng)在20世紀(jì)70年代左右有過(guò)界限分明的兩個(gè)學(xué)派之間的激烈交鋒,一撥是希望通過(guò)語(yǔ)法規(guī)則來(lái)做語(yǔ)音識(shí)別的“規(guī)則派”,另一撥是基于統(tǒng)計(jì)方法的“統(tǒng)計(jì)派”,這兩撥從事相同領(lǐng)域研究的學(xué)者竟然分別召開(kāi)自己的學(xué)術(shù)會(huì)議,即便出席同一大會(huì)竟然也要分場(chǎng)開(kāi)小會(huì)。
到了20世紀(jì)90年代“統(tǒng)計(jì)派”的識(shí)別率已經(jīng)達(dá)到了90%以上,而“規(guī)則派”僅有不到70%,勝負(fù)已分(吳軍老師的《數(shù)學(xué)之美》一書(shū)中對(duì)這段歷史進(jìn)行了詳盡有趣的闡述)。但試問(wèn)如果有一名博士生在20世紀(jì)70年代將自己學(xué)術(shù)方向定為“規(guī)則派”,到了20世紀(jì)90年代的時(shí)候他該做何感想?
到了“登堂入室”這個(gè)階段之后,做好選擇顯得尤為重要,這樣的選擇不僅僅限于學(xué)術(shù)方向,也涵蓋例如“做學(xué)術(shù)”還是“做產(chǎn)業(yè)”等等更廣義的范圍。一個(gè)可以參考的經(jīng)驗(yàn)是,如果人生的重大決策失誤,基本要用五年來(lái)挽回,大家要考慮清楚自己有幾個(gè)這樣的五年。
3. 唯一的限制往往是自己的妥協(xié)
看看本小節(jié)的標(biāo)題,讀者可能會(huì)覺(jué)得本文這下要以“毒雞湯”收尾了。但其實(shí)在這里“妥協(xié)”并不是一個(gè)貶義詞,筆者認(rèn)為它起碼是個(gè)中性詞。從某種意義上講,每個(gè)人最終都會(huì)達(dá)到某種“妥協(xié)”,而不妥協(xié)就意味著背后存在與現(xiàn)狀不匹配的野心或者欲望,什么時(shí)候野心和欲望跟現(xiàn)實(shí)匹配了,也就一定會(huì)“妥協(xié)”。這就是華山論劍的秘密,每個(gè)能站在頂峰的人都必定抱著某種超乎常人的野心或者欲望,當(dāng)然這里的野心或者欲望是廣義的,也同樣指對(duì)于學(xué)術(shù)的追求。
最后,“毒雞湯”不負(fù)眾望的要出現(xiàn)了,根據(jù)筆者的觀察,每個(gè)人的“妥協(xié)點(diǎn)”并不是自己設(shè)定的,一般情況下自己也無(wú)法影響,所以每個(gè)人最終要走到的高度往往是確定的。
但從筆者的角度看來(lái),并不覺(jué)得站在華山之巔就一定是好的,真正的“好”是能夠坦然接受自己的“妥協(xié)點(diǎn)”,并且能夠在自己的“妥協(xié)點(diǎn)”安安心心、高高興興的工作和生活下去,這才是最具智慧的選擇。
- 蜜度索驥:以跨模態(tài)檢索技術(shù)助力“企宣”向上生長(zhǎng)
- 央國(guó)企采購(gòu)管理升級(jí),合合信息旗下啟信慧眼以科技破局難點(diǎn)
- Apache Struts重大漏洞被黑客利用,遠(yuǎn)程代碼執(zhí)行風(fēng)險(xiǎn)加劇
- Crunchbase:2024年AI網(wǎng)絡(luò)安全行業(yè)風(fēng)險(xiǎn)投資超過(guò)26億美元
- 調(diào)查報(bào)告:AI與云重塑IT格局,77%的IT領(lǐng)導(dǎo)者視網(wǎng)絡(luò)安全為首要挑戰(zhàn)
- 長(zhǎng)江存儲(chǔ)發(fā)布聲明:從無(wú)“借殼上市”意愿
- 泛微·數(shù)智大腦Xiaoe.AI正式發(fā)布,千人現(xiàn)場(chǎng)體驗(yàn)數(shù)智化運(yùn)營(yíng)場(chǎng)景
- IDC:2024年第三季度北美IT分銷(xiāo)商收入增長(zhǎng)至202億美元
- AI成為雙刃劍!凱捷調(diào)查:97%組織遭遇過(guò)GenAI漏洞攻擊
- openEuler開(kāi)源五年樹(shù)立新里程碑,累計(jì)裝機(jī)量突破1000萬(wàn)
- 創(chuàng)想 華彩新程!2024柯尼卡美能達(dá)媒體溝通會(huì)煥新增長(zhǎng)之道
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書(shū)面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開(kāi)相關(guān)鏈接。