人工智能之樸素貝葉斯(NB)

前沿:學(xué)習(xí)過概率的人一定知道貝葉斯定理,在信息領(lǐng)域內(nèi)有著無與倫比的地位。貝葉斯算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。

人工智能之機(jī)器學(xué)習(xí)中最為廣泛的兩種分類模型是1)決策樹模型(Decision Tree Model)和2) 樸素貝葉斯模型(Naive Bayesian Model)。決策樹DT已經(jīng)講過,請參見之前有關(guān)文章。

今天我們重點(diǎn)探討一下樸素貝葉斯NB,注意這里NB不是牛X, 而是Naive Bayesian。 ^_^

人工智能之樸素貝葉斯(NB)

樸素貝葉斯是經(jīng)典的機(jī)器學(xué)習(xí)算法之一,也是為數(shù)不多的基于概率論的分類算法。樸素貝葉斯原理簡單,也很容易實(shí)現(xiàn),多用于文本分類、垃圾郵件過濾、情感分析等。

英國數(shù)學(xué)家托馬斯·貝葉斯(Thomas Bayes)在1763年發(fā)表的一篇論文中,首先提出了貝葉斯定理。

人工智能之樸素貝葉斯(NB)

貝葉斯定理的應(yīng)用需要大量的計(jì)算,因此歷史上很長一段時(shí)間,無法得到廣泛應(yīng)用。只有計(jì)算機(jī)誕生以后,它才獲得真正的重視。人們發(fā)現(xiàn),許多統(tǒng)計(jì)量是無法事先進(jìn)行客觀判斷的,而互聯(lián)網(wǎng)時(shí)代出現(xiàn)的大型數(shù)據(jù)集,再加上高速運(yùn)算能力,為驗(yàn)證這些統(tǒng)計(jì)量提供了方便,也為應(yīng)用貝葉斯定理創(chuàng)造了條件,它的威力正在日益顯現(xiàn)。

概念和定義:

樸素貝葉斯法是基于貝葉斯定理特征條件獨(dú)立假設(shè)的分類方法。樸素貝葉斯分類器NBC (NaiveBayes Classifier)發(fā)源于古典數(shù)學(xué)理論,有著堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),以及穩(wěn)定的分類效率。樸素貝葉斯分類器(NBC)模型所需估計(jì)的參數(shù)很少,對缺失數(shù)據(jù)不太敏感,算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實(shí)際上并非總是如此,這是因?yàn)镹BC模型假設(shè)屬性之間相互獨(dú)立,這個(gè)假設(shè)在實(shí)際應(yīng)用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。

貝葉斯分類是一系列分類算法總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。而樸素貝葉斯分類是貝葉斯分類中最簡單,也是常見的一種分類方法。

理論基礎(chǔ):

樸素貝葉斯最核心的部分是貝葉斯法則,而貝葉斯法則的基石是條件概率。貝葉斯法則如下:

人工智能之樸素貝葉斯(NB)

這里的C表示類別,輸入待判斷數(shù)據(jù),式子給出要求解的某一類的概率。

樸素貝葉斯分類器基于一個(gè)簡單的假定:給定目標(biāo)值時(shí)屬性之間相互條件獨(dú)立。

人工智能之樸素貝葉斯(NB)

樸素貝葉斯分類器模型:

Vmap=arg maxP( Vj | a1,a2...a(chǎn)n) Vj屬于V集合,其中Vmap是給定一個(gè)example,得到的最可能的目標(biāo)值。其中a1...a(chǎn)n是這個(gè)example里面的屬性。Vmap目標(biāo)值,就是后面計(jì)算得出的概率最大的一個(gè)。所以用max來表示。

貝葉斯公式應(yīng)用到 P( Vj | a1,a2...a(chǎn)n)中。可得到 Vmap= arg max P(a1,a2...a(chǎn)n | Vj ) P( Vj ) / P(a1,a2...a(chǎn)n)。又因?yàn)闃闼刎惾~斯分類器默認(rèn)a1...a(chǎn)n互相獨(dú)立。所以P(a1,a2...a(chǎn)n)對于結(jié)果沒有用處??傻玫絍map= arg max P(a1,a2...a(chǎn)n | Vj ) P( Vj )。

人工智能之樸素貝葉斯(NB)

"樸素貝葉斯分類器基于一個(gè)簡單的假定:給定目標(biāo)值時(shí)屬性之間相互條件獨(dú)立。換言之。該假定說明給定實(shí)例的目標(biāo)值情況下。觀察到聯(lián)合的a1,a2...a(chǎn)n的概率正好是對每個(gè)單獨(dú)屬性的概率乘積:P(a1,a2...a(chǎn)n | Vj ) =Πi P(ai| Vj )

因此,樸素貝葉斯分類器模型Vnb=arg max P( Vj ) Π iP ( ai | Vj )

人工智能之樸素貝葉斯(NB)

12下一頁>

(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進(jìn)一步核實(shí),并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。
任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )

贊助商
2018-05-07
人工智能之樸素貝葉斯(NB)
前沿:學(xué)習(xí)過概率的人一定知道貝葉斯定理,在信息領(lǐng)域內(nèi)有著無與倫比的地位。貝葉斯算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。

長按掃碼 閱讀全文