據(jù)外媒報道,美國MIT(麻省理工學院)提出一種可以保護基于云的AI系統(tǒng),可以在不降低速度的情況下保護云計算的AI人工智能。這種基于云的AI人工智能系統(tǒng)的安全性非常重要,特別是當人們使用像照片或醫(yī)療記錄這樣的敏感數(shù)據(jù)時。
迄今為止,使用傳統(tǒng)方法,使得加密數(shù)據(jù)可以使機器學習系統(tǒng)如此緩慢,以致于幾乎無法使用。
然而,值得慶幸的是,美國MIT提出一種GAZELLE形式的解決方案,這項技術(shù)使用加密卷積神經(jīng)網(wǎng)絡(luò)且不會出現(xiàn)急劇減速。更關(guān)鍵的是將兩種現(xiàn)有技術(shù)融為一體,避免了這些方法產(chǎn)生的常見瓶頸。
首先,用戶依靠“亂碼電路”方法將數(shù)據(jù)上傳到AI,該方法采用輸入并向會話的每一方發(fā)送兩個不同的輸入,為用戶和神經(jīng)網(wǎng)絡(luò)隱藏數(shù)據(jù),同時使相關(guān)輸出可訪問。然而,如果該方法被用于整個系統(tǒng),則通常過于密集,因此MIT在發(fā)送給用戶之前,使用更高要求的計算層的同態(tài)加密(它既取又產(chǎn)加密數(shù)據(jù))。同態(tài)方法須引入噪聲才能工作,因此它只限于在傳輸信息之前一次壓縮一層。簡而言之:MIT正在根據(jù)每一方做得最好的方式分擔工作量。
測試結(jié)果表明,其方法性能比傳統(tǒng)方法快了30倍,MIT承諾按照他們的要求將所需的網(wǎng)絡(luò)帶寬縮減一個數(shù)量級。傳統(tǒng)方法迫使公司和機構(gòu)要么建立昂貴的本地神經(jīng)網(wǎng)絡(luò),要么完全忽略基于AI人工智能的系統(tǒng)。而MIT提出的云AI方法將會導致更多使用基于互聯(lián)網(wǎng)的神經(jīng)網(wǎng)絡(luò)來處理重要信息。例如,醫(yī)院可以讓AI發(fā)現(xiàn)MRI掃描中的醫(yī)學問題,并與其他醫(yī)院專家或醫(yī)生共享,而不暴露患者數(shù)據(jù)和隱私。敏感數(shù)據(jù)即保持安全性,又保持時效性。
(免責聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )