從2006年加拿大Hinton教授提出深度學習技術(shù)開始,到2012年ImageNet競賽在圖像識別領(lǐng)域帶來的突破,如今,人工智能的第三次發(fā)展浪潮到來。
不同于80年代隨著神經(jīng)網(wǎng)絡(luò)而來的技術(shù)進步無法走進現(xiàn)實的困境,這一次的發(fā)展浪潮真正帶來了技術(shù)的落地,商業(yè)化道路也走得更加順暢。
隨后的每一年,人工智能技術(shù)都在突飛猛進地發(fā)展,應用成果如雨后春筍般涌現(xiàn)。海量的數(shù)據(jù),不斷優(yōu)化的算法,以及與之匹配發(fā)展的計算機運算能力,都為更多的發(fā)展可能性及應用可能性提供了廣闊的舞臺。
而隨著人工智能在越來越多的方面落地,人們越來越多地感受到人工智能對于生活的改變,接受程度逐漸提升。
1、人機融合智能
除了技術(shù)產(chǎn)品化的道路拓寬以外,當下的人工智能還有許多亟待發(fā)展和研究的方向。它的以下特點推動它在第三次發(fā)展浪潮中前往更具突破性的階段,分別為:從人工知識表達技術(shù)到大數(shù)據(jù)驅(qū)動知識學習;從處理單一的數(shù)據(jù)到跨媒體認識、學習和推理;從追求“機器智能”到邁向人機混合的增強智能;從聚焦“個體智能”到基于互聯(lián)網(wǎng)絡(luò)的群體智能;從機器人到自主無人系統(tǒng)。
其中,人機混合的增強智能即為將人類智能與人工智能進行結(jié)合,邁向新的智能階段,此為人機融合智能。近年來,人機融合越來越成為人工智能領(lǐng)域的熱詞。
2018年10月11日,美國“防務一號”網(wǎng)站發(fā)表刊文表示美國軍方高級情報員越來越擔心中國在人工智能等“提升人類效率”方面的研究。
美國國防情報局(DIA)局長羅伯特?阿什利(Robert Ashley)在舉行的美國陸軍協(xié)會(Association of the U.S. Army)年度會議上表示,“人機融合”是顛覆性技術(shù)的一個“關(guān)鍵領(lǐng)域”,將會影響美國的國家安全。他認為“中國在研究神經(jīng)網(wǎng)絡(luò)和人工智能方面所作的努力是一個分階段的過程,希望最終達到‘人與機器的融合’的程度”。
圖1 機器人向著人機融合的方向發(fā)展
Fig. 1 Robot is developing towards the direction of human-machine fusion
在人工智能研究的領(lǐng)域,更快的計算并不是我們希望達到的最終目的,而讓計算機變得越來越與人融合,最終達到人機融合智能,才是最終的發(fā)展方向。當前人工智能雖然普及了眾多的應用形式,但是依然以計算為中心、難以突破意識壁壘,而能夠融合意識與計算特性的人類智能和人工智能融合智能體,即為人機融合智能。
人機融合智能研究是智能技術(shù)發(fā)展到一定程度的產(chǎn)物,它既包括人工智能的技術(shù)研究,也包括機器與人、機器與環(huán)境及人、機、環(huán)境之間關(guān)系的探索。人機融合智能研究不僅僅要考慮機器技術(shù)的高速發(fā)展,更要考慮交互主體-人類的思維與認知方式,讓機器與人類各司其職,互相促進,這才是人工智能真正的前景與趨勢。
2 、群體智能
在上文中提到的人工智能發(fā)展的特點中,人工智能是從聚焦“個體智能”到基于互聯(lián)網(wǎng)絡(luò)的群體智能。群體智能是源于對螞蟻、蜜蜂等為代表的社會性昆蟲的群體行為的研究,最早被用在細胞機器人系統(tǒng)的描述中。它具有分布式無中心的控制,并且群體自組織性。
在自然界中,集群的方式可以讓簡單的生物展現(xiàn)出驚人的復雜性、效率甚至創(chuàng)造力。在人工智能領(lǐng)域,可以通過這種方法產(chǎn)生一種新的智能,像超級專家一樣“共同思考”。通過隨機擴散搜索、蟻群優(yōu)化、粒子群優(yōu)化等算法,群體智能已應用在了無線通信、醫(yī)療、無人駕駛、藝術(shù)創(chuàng)作等方面[8]。
如今,Unanimous A.I.公司就在致力于研究群體智能,希望能夠?qū)?shù)百人的知識、智慧、洞察以及知覺通過算法連接起來。該公司研制的SWARM平臺等軟件可以通過實時閉環(huán)控制系統(tǒng)將分布式網(wǎng)絡(luò)組織成“人群”,能夠聚集人類參與者的集體智慧以得出意見。它成功預測了奧斯卡,超級碗比賽,以及法國大選的結(jié)果[9]。該系統(tǒng)對2017-2018賽季20周的NHL曲棍球比賽進行了預測,得到了85%的成功率,超過了維加斯博彩市場的22%。除了比賽和票選等預測活動,該群體智能方法還應用到了醫(yī)療領(lǐng)域,其診斷肺炎的準確率比單獨工作的放射科醫(yī)生團隊高出22%。
圖2 進行肺炎診斷的ASI(人工群體智能)
Fig. 2 ASI(Artificial Swarm Intelligence) in the diagnosis of pneumonia
3 、認知計算
認知是人與世界交互的重要過程,認知計算旨在模仿人類大腦的計算系統(tǒng),讓計算機像人一樣認知和思考。只有實現(xiàn)了認知計算,才能真正實現(xiàn)可以學習并與人類自然交互的系統(tǒng)。從20世紀開始,人們通過單一用途的機械系統(tǒng)指示機器的行動,此為“制表時代”;在20世紀50年代進入了“編程時代”,人們通過編程的方式控制計算設(shè)備;從2011年起,人們就將認知計算列為了人工智能發(fā)展的目標,開始進入“認知時代”。在群體智能方面,我們借鑒了螞蟻等生物的啟示,而在認知計算里,我們依然要聚焦于生物,研究認知的整個過程。在認知計算中,系統(tǒng)通過大規(guī)模的學習,有目的、理性、自然地與人類進行互動。認知計算讓機器不僅僅通過編程來執(zhí)行指令,而是通過與人類的互動以及它們對環(huán)境的體驗來學習和推理。它能夠模擬人類的思維過程,理解世界的模糊性和不確定性。通過權(quán)衡來自多個來源的信息和想法,進行推理并提供假設(shè)。
IBM的Watson系統(tǒng)是其中最有名的認知系統(tǒng)。它通過篩選大量的數(shù)據(jù)庫獲取信息,以問答的形式幫助用戶回答對復雜問題的見解。通過認知計算的方式,它可以不斷地從用戶互動中獲取數(shù)據(jù),變得更加聰明。它目前已經(jīng)成為了一個具有認知計算能力的生態(tài)系統(tǒng),可不斷地衍生出各種行業(yè)解決方案,被應用于醫(yī)療、天氣預測法律顧問等方面。今年該平臺被用在了教育領(lǐng)域,瑞典的一個研究小組開發(fā)出了一個使用IBM Watson系統(tǒng)的學習并行編程的助手,在實際教學實驗中獲得了學生的好評。
認知計算的發(fā)展需要我們不斷地對人的認知過程進行研究。其中,態(tài)勢感知的研究也屬于認知計算領(lǐng)域。態(tài)勢感知將人的認知過程分為三個獨立的層次,分別為:對環(huán)境中元素的感知,對當前形勢的理解,對未來狀況的預測[15]。通過建模和結(jié)構(gòu)化的思想,可以將人的認知過程量化為態(tài)勢感知程度。除此之外,人們也在不斷的通過其他方式對人類的認知過程進行量化,試圖通過計算機來進行模擬和計算。認知學可能是人工智能下一步發(fā)展的突破口。
4 、情感計算
在計算機的認知、學習、記憶和言語的水平都在逐漸提高的同時,我們也必須意識到,讓計算機具有能夠感知和理解人的情感,并且針對人的情感做出相應合適反應的能力,是讓計算機具有更高的、全面的智能的必經(jīng)之路。早在2006年,在Minsky的著作《情感機器》中就提出“人工智能=認知智能+情感智能”的說法[16]。情感計算的加入能夠大大拓寬人工智能的應用領(lǐng)域。根據(jù)手段的不同,情感計算研究主要分為基于視覺,基于語音,基于文本及基于腦補信息和多模態(tài)信息的情感分析。
圖3 通過多種可穿戴運動傳感器捕捉微妙的心臟運動
Fig. 3 Capture subtle cardiac motions by multiple
wearable motion sensors
許多研究機構(gòu)及情感計算工具公司都在不斷對情感計算領(lǐng)域進行探索,例如:麻省理工學院媒體實驗室,Microsoft VIBE團隊,Emotient公司等。他們力求達到更精準的情緒識別,并且不斷開拓新的應用領(lǐng)域。
從研究設(shè)備上,由于得到更多樣的可穿戴設(shè)備支持,今年有許多有關(guān)可穿戴設(shè)備進行情感測量的研究涌現(xiàn),例如:通過可穿戴設(shè)備獲取運動心率進行情感評估,或進行壓力和睡眠評估;還有在皮膚布置傳感器的表皮機器人作為新的可穿戴設(shè)備。
從技術(shù)上,深度學習也大量應用在了情感計算上。例如:將CaltureNet方法應用于對自閉癥兒童的面部情感識別;將深度卷積神經(jīng)網(wǎng)絡(luò)應用于語音頻譜圖上進行語音情感分析。
從情緒的研究上,也有更多針對心理疾病的專門研究,例如:自殺沖動的數(shù)字化表征研究;能夠影響和參與自閉癥治療的機器人感知研究。更加多元化的研究方向,以及更加專門的應用領(lǐng)域的研究,標志著情感計算的發(fā)展也在不斷走向成熟。
12下一頁>(免責聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )