CVPR2020 | 基于點的3D單階段對象檢測器3DSSD

論文原文:3DSSD: Point-based 3D Single Stage Object Detector

作者:Zetong Yang,Yanan Sun,Shu Liu,Jiaya Jia

發(fā)表會議:CVPR 2020

基于體素的 3D 單階段檢測器的普及率與未開發(fā)的基于點的方法形成對比。在本文中,作者提出了一種輕量級的基于點的 3D 階段目標檢測器 3DSSD,以實現(xiàn)準確性和效率的良好平衡。在這種范例中,所有現(xiàn)有的基于點的方法中必不可少的上采樣層和優(yōu)化階段都將被放棄。相反,在下采樣過程中提出一種融合采樣策略,以使在代表性較小的點上進行檢測變得可行。本文為了滿足高精度和高速度的要求,開發(fā)了一種精細的框預測網(wǎng)絡,其中包括候選生成層和具有 3D 中心度分配策略的無錨回歸頭。3DSSD 范例是一種優(yōu)雅的單階段免錨模式,在廣泛使用的 KITTI 數(shù)據(jù)集和更具挑戰(zhàn)性的 nuScenes 數(shù)據(jù)集上對其進行評估,本文的方法大大優(yōu)于所有基于體素的單階段方法,甚至可以產生與兩階段基于點的方法相當?shù)男阅埽评硭俣雀哌_ 25+ FPS,比以前的最先進的基于點的方法快 2 倍。

論文背景

3D 畫面理解對于包括自動駕駛和增強現(xiàn)實在內的許多應用都起到了促進,本文聚焦于 3D 的目標檢測,即預測點云表示的3D目標的邊緣框及其類別標簽。

2D 的目標檢測已經有了很大突破,但無法直接將其方法應用到 3D 的場景中。與 2D 的圖片相比,點云更加稀疏無序,而且對于局部特征十分敏感,這使得我們很難使用 CNN 進行學習,因此 3D 的目標檢測的主要問題就是如何利用點云數(shù)據(jù)。

已有的一些方法如將點云轉化為圖片、將點云分割為等分布的體素,本文將其稱為基于體素的方法,這些方法都是將點云轉化為 2D 的目標檢測算法可以應用的形式,雖然這些方法直接且有效,但在轉化過程中仍然存在著信息損失,這影響了其表現(xiàn)的進一步提升。

還有一些基于點的方法直接將點云作為輸入,然后對每一個點進行邊界框的預測。其中又分為兩個階段,第一個階段設置一些集合提取層(SA)用于降采樣以及抽取上下文特征,另一個階段則是使用特征傳播層(FP)來進行上采樣以及傳播點在降采樣中丟失的特征。一種 3D 的區(qū)域建議網(wǎng)絡(RPN)可以為每個點生成建議,從而在第二階段給出最終的預測結果。這些方法取得了更好的效果,但做 inference 需要更長的時間。其中 FP 的第二階段耗費了一半的 inference 時間,目前 SA 中的采樣策略是基于 3D 歐氏距離的最遠點采樣(D-FPS),這意味著先前僅有少數(shù)內部點的樣本或許會在采樣后被丟失,從而導致它們無法被檢測到。

在 STD 中,如果不使用上采樣而僅使用降采樣后被保留下來的點做檢測,模型的效果將會下降 9%,這就是 FP 必須要用來做上采樣的原因。為解決這一問題,本文首先提出了一種基于特征距離的采樣策略 F-FPS,并進一步的將 F-FPS 與 D-FPS 進行混合。

為了更好地探索在 SA 之后被保留下來的有代表性的點,本文提出了一個邊框預測網(wǎng)絡,包括一個候選生成層(CG)、一個無錨回歸頭和一個 3D 中心分配策略。在 CG 中,首先用 F-FPS 中有代表性的點生成候選點,這一過程收到這些點以及共現(xiàn)例子中的中心點的相對位置的約束。接下來將這些候選點作為中心,從 F-FPS 和 D-FPS 有代表性的點中選取其周圍的點,將其特征通過多層感知網(wǎng)絡(MLP),這些特征最終被輸入到無錨回歸頭中來預測 3D 邊框。本文還設計了一個 3D 中心分配策略,給候選點中更靠近樣本中心的點更高的得分。

本文在 KITTI 和 nuScenes 兩個數(shù)據(jù)及上進行了實驗,實驗結果表明本文提出的方法優(yōu)于所有基于體素的單階段方法,在更快的 inference 的基礎上與兩階段基于點的方法也具有一定可比性。本文的主要貢獻如下:

1. 提出了一個輕量而高效的基于點的單階段 3D 目標檢測器 3DSSD,拋棄了需要大量計算的 FP,這與已有的基于點的方法都不同。

2. 提出了一個混合的采樣策略,可以保留先前僅有少數(shù)內部點的樣本。

3. 設計了一個高效的邊框預測網(wǎng)絡,實驗表明該框架由于所有的單階段方法,在更快的 inference 的基礎上表現(xiàn)出與兩階段方法有可比性的效果。

123下一頁>

(免責聲明:本網(wǎng)站內容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關資料所引致的錯誤、不確或遺漏,概不負任何法律責任。
任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內容可能涉嫌侵犯其知識產權或存在不實內容時,應及時向本網(wǎng)站提出書面權利通知或不實情況說明,并提供身份證明、權屬證明及詳細侵權或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關文章源頭核實,溝通刪除相關內容或斷開相關鏈接。 )

贊助商
2020-08-20
CVPR2020 | 基于點的3D單階段對象檢測器3DSSD
論文原文:3DSSD: Point-based 3D Single Stage Object Detector作者:Zetong Yang,Yanan Sun,Shu Liu,Jiaya Jia發(fā)表會

長按掃碼 閱讀全文